Examen National 2016 Session Normal

Exercice 1 (2,5 points):

On considère la suite numérique (u_n) définie par : $u_0 = 2$ et $u_{n+1} = \frac{3+u_n}{5-u_n}$ pour tout entier

- 1) Vérifier que : $u_{n+1} 3 = \frac{4(u_n 3)}{2 + (3 u_n)}$ pour tout entier naturel n puis montrer 3par récurrence que 0,75 $u_n < 3$ pour tout entier naturel m
 - 2) Soit (v_n) la suite numérique définie par : $v_n = \frac{u_n 1}{3 u_n}$ pour tout entier naturel n
- a) Montrer que (v_n) est une suite géométrique de raison $\frac{1}{2}$ puis en déduire que : $v_n = \left(\frac{1}{2}\right)^2$ pour 0;75 tout entier naturel n
- b) Montrer que : $u_n = \frac{1+3v_n}{1+v_n}$ pour tout entier naturel n puis écrire u_n en fonction de n 0,5
- 0,5 c) Déterminer la limite de la suite (u_n)

Exercice 2 (3 points):

Dans l'espace rapporté à un repère orthonormé direct $(0, \vec{\iota}, \vec{j}, \vec{k})$, on considère les points A(2, 1, 3); B(3, 1, 1); C(2, 2, 1) et la sphère (S) d'équation : $x^2 + y^2 + z^2 - 2x + 2y - 34 = 0$

- 0,5 1) a) Montrer que : $\overrightarrow{AB} \wedge \overrightarrow{AC} = 2\overrightarrow{\iota} + 2\overrightarrow{\jmath} + \overrightarrow{k}$
- 0,5 b) En dédire que : 2x + 2y + z - 9 = 0 est une équation cartésienne du plan (ABC)
- 2) a) Montrer que la sphère (S) a pour centre le point $\Omega(1, -1, 0)$ et pour rayon 6 0,5
- 0,5 b) Montrer que $d(\Omega, (ABC)) = 3$ et en déduire que le plan (ABC) coupe la sphère (S) suivant un cercle (Γ)
- 0,5 3) a) Déterminer une représentation paramétrique de la droite (Δ) passant par le point Ω et orthogonale au plan (ABC)
- 0,5 b) Montrer que le point B est le centre du cercle (Γ)

Exercice 3 (3 points):

- 1) Résoudre dans l'ensemble des nombres complexes \mathbb{C} l'équation : $z^2 4z + 29 = 0$
- 2) Dans le plan complexe rapporté à un repère à un repère orthonormé direct $(0, \overrightarrow{e_1}, \overrightarrow{e_2})$, on considère les points Ω , A et B d'affixe respectives ω , a et b telles que: $\omega = 2 + 5i$, a = 5 + 2i et b = 5 + 8i .
- a) Soit u le nombre complexe tel que : $u = b \omega$ 0,75 Vérifier que : u = 3 + 3i puis montrer que : $\arg u \equiv \frac{n}{4} [2\pi]$
- 0,25 b) Déterminer un argument du nombre complexe $\ \overline{u}$ $(\overline{u}$ étant le conjugué de u)
- c) Vérifier que : $a \omega = \overline{u}$ puis en déduire que : $\Omega A = \Omega B$ et que $\arg\left(\frac{b-\omega}{a-\omega}\right) \equiv \frac{\pi}{2} [2\pi]$ 0,75

0,75

1

0,5

1,5

0,5

0,5

0,5

0,75

0,75

Examen National 2016

Session Normal

0,5 d) On considère la rotation R de centre Ω et d'angle $\frac{\pi}{2}$ Déterminer l'image du point A par la rotation R

Exercice 4 (3 points):

Une urne contient 10 boules : quatre boules rouges et six boules vertes (les boules sont indiscernables au toucher)

On tire au hasard, simultanément, deux boules de l'urne

- 1) Soit A l'événement : « Les deux boules tirées sont rouge » Montrer que : $p(A) = \frac{2}{15}$
- 2) Soit X la variable aléatoire qui à cheque tirage associe le nombre de boules rouges restantes dans l'urne après le tirage des deux boules
 - a) Montrer que l'ensemble des valeurs prises par X est {2,3,5}
- b) Montrer que : $p(X=3) = \frac{8}{15}$ puis déterminer la loi de probabilité de la variable aléatoire X

Problème (8,5 points):

I- On considère la fonction numérique f définie sur \mathbb{R} par : $f(x) = 2x - 2 + e^{2x} - 4e^x$

Soit (C_f) la courbe représentative de la fonction f dans un repère orthonormé $(O, \vec{\iota}, \vec{j})$ (unité : 1 cm)

- 1) a) Montrer que : $\lim_{x \to -\infty} f(x) = -\infty$ 0,25
- 0,5 b) Montrer que la droite (D) d'équation : y = 2x - 2 est asymptote à la courbe (C_f) au voisinage de
- 2) a) Montrer que : $\lim_{x \to +\infty} f(x) = +\infty$ 0,5
- b) Montrer que : $\lim_{x \to +\infty} \frac{f(x)}{x} = +\infty$ puis interpréter géométriquement le résultat 0,5
- 3) a) Montrer que : $f'(x) = 2(e^x 1)^2$ pour tout nombre réel x 0.5
- b) Donner le tableau de variations de la fonction f sur \mathbb{R} (Remarquer f'(0) = 0) 0,25
- 0,75 c) Montrer qu'il existe un réel unique α de l'intervalle]1, ln 4[tel que : $f(\alpha) = 0$
 - 4) a) Montrer que la courbe (C_f) est situé au-dessus de la droite (D) sur l'intervalle $]\ln 4, +\infty[$ et en dessous de la droite (D) sur l'intervalle $]-\infty$, ln 4[
 - b) Montrer que la courbe (C_f) admet un point d'inflexion unique de coordonnées (0, -5)
- c) Construire la droite (D) et la courbe (C_f) dans le même repère (O, \vec{l}, \vec{j}) 0,75 (on prendra $\ln 4 \approx 1.4$ et $\alpha \approx 1.3$)
- 5) a) Montrer que: $\int_0^{\ln 4} (e^{2x} 4e^x) dx = -\frac{9}{2}$ 0,5
- b) Calculer, en cm², l'aire du domaine plan limité par la courbe (C_f) , la droite (D), l'axe des 0,5 ordonnées et la droite d'équation : $x = \ln 4$
- II- 1) a) Résoudre l'équation différentielle (E): $y \gg -3y' + 2y = 0$ 0,5
 - b) Déterminer la solution g de l'équation (E) vérifiant : g(0) = -3 et g'(0) = -2
 - 2) Soit h la fonction numérique définie sur l'intervalle $]\ln 4, +\infty[$ par : $h(x) = \ln(e^{2x} 4e^x)$
 - a) Montrer que la fonction h admet une fonction réciproque h-1 et que h-1 est définie sur R
 - b) Vérifier que : $h(\ln(5)) = \ln 5$ puis déterminer $(h^{-1})'(\ln 5)$

